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1 . Introduction

When instability in a material occurs, for example due to material or thermal softening, the boundary-value
problem loses its ellipticity and, as a consequence, becomes ill-posed. The theoretical solution of such problem
leads to strain localization in a set of measure zero (for three-dimensional problem it is a surface), whereas the
results of numerical simulations pathologically depend on discretization [4]: the size and the mesh orientation
govern the width and the direction of the localized deformation band. Thus, if ellipticity is lost the problem
requires some regularization.

The ellipticity conditions are well described for isothermal problems involving large strains or inelastic be-
haviour, see e.g. [6] or [5] However, in the case of thermo-mechanical coupling researchers usually assume
some limitations, for example small strains, elasticity [1], or internal adiabaticity (lack of heat conduction) [3].
The aim of this paper is the analysis of the ellipticity condition for large strain thermo-plasticity.

2 . Material model

The considered material model involves hyperelasticity and plasticity with the von Mises yield criterion and
associative flow rule. Young’s modulus and initial yield strength may depend on the change of temperature. The
thermomechanical coupling includes thermal expansion and heat production in a plastic process. Following [7],
the multiplicative split of the deformation gradient into reversible and plastic components is used, F = FrFp,
and the free energy function has the form
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), αT is a thermal expansion coefficient and T0 – referential temperature. The imple-
mentation of a similar large strain thermoplasticity model within AceGen/FEM packages is presented in [8].

3 . Ellipticity verification

The condition of ellipticity loss can be derived in two ways. The first one is based on the examination of
equilibrium on a discontinuity surface [3]. It is assumed that a jump of traction (and its rate) across discontinuity
surface is zero

(2) ⟦σ⟧n = 0, ⟦σ̇⟧n = 0

where σ is Cauchy stress tensor and n is a normal to the discontinuity surface in the current configuration. For
the thermomechanical coupling a zero jump of heat flux q and of its rate is also required

(3) ⟦q⟧ ⋅ n = 0, ⟦q̇⟧ ⋅ n = 0
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The second approach involves the analysis of the perturbation of a base state [1]. On the initially homogeneously
deformed specimen with constant temperature distribution the following perturbations are imposed

(4) upert
(x, t) = exp(ik (n ⋅ x + vt))û, T pert

(x, t) = exp(ik (n ⋅ x + vt))T̂

where x is the particle current position, t is time, û and T̂ are constant amplitudes, v is wave speed, k – wave
number and i – imaginary unit. Inserting definitions (4) into balance equations for linear momentum and energy,
the set of equations for û and T̂ is obtained.

Both approaches might be formulated in the referential or current configuration. It can be noted that for the cou-
pled thermomechanical problem both methods lead to a set of two equations. There are two special limit cases
which are analysed: isothermal and adiabatic, for which singularity of isothermal and adiabatic acoustic ten-
sors, respectively, indicates the loss of ellipticity. It is worth mentioning that an alternative approach involving
the analysis of generalized eigenvectors is considered in [2].

The derived conditions are numerically tested for samples in tension, simulated within the finite element method
using AceGen/FEM package. The crucial feature of the package is automatic differentiation which is efficiently
applied for the calculation of material tangents required to obtain acoustic tensors. The ellipticity conditions
are verified at selected Gauss points after converged load steps. The exemplary output of the ellipticity analysis
is presented in Figure 1.

Figure 1: Deformed sample with plastic strain measure distribution (on the left) and Gauss points at which
ellipticity is lost (on the right) – results for large strain elastoplasticity
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