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1 . Problem statement

Despite successful use of discrete element method or DEM over a wide variety of engineering problems, the
rigidity of particles assumed in classical formulation of DEM leads to incorrect behaviour in applications such
as powder compaction at higher relative densities [1]. In our previous work [3], we have proposed an original
formulation of DEM for deformable particles which we term as deformable discrete element method or DDEM.
In-fact we have proven that the modelling capabilities of standard DEM can be enhanced by taking proper
account of particle deformation. In order to incorporate deformability in discrete elements, the iterative scheme
of our novel formulation results in an implicit relationship between contact forces and particle displacements.
In presented work, the convergence limit for this implicit relationship is obtained analytically and verified
numerically. The idea of DDEM is explained further.

2 . Basic formulation of the deformable discrete element method

Referring to Fig.1 idea of DDEM can be explained as follows, under the uniform stress assumption a global
deformation mode is introduced in particles which in-turn establishes new contact interaction due to reshaping
of the particle and invokes force redistribution. Simultaneously, the modification in particle shape also leads to
change in local interaction and hence alters the particle overlap from say, h to hc (cf. Fig. 1). In this way, due to
particle deformation, the contact in one point influences the contact interaction at other points and thus a non-
local contact model evolves. This is the distinctive feature of DDEM formulation with respect to standard DEM
where contacts are independent and do not influence each other. Considering the global deformation mode to
deduce particle overlap and consequently the contact force gives an implicit relationship of the form,
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Figure 1: The idea of the deformable discrete element method (DDEM)
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where, the superscript n denotes the current time step and εp indicate the strains instigated in particles due to
contact force at current time step, Fc

(n). It will be shown that the implicit relationship of Eqn. (1) can be solved
iteratively and corresponding relationship for the successive differences can be formulated as:
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(2) F(n,k+1)
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c = B (F(n,k)
c − F(n,k−1)

c ) , k >= 1 .

where, B is certain matrix and k − 1, k, k + 1 represent the consecutive iterations for a given time step n. It
must be noted though that the iterative solution may not always converge. In general, the convergence requires
that for a certain matrix norm ‖ · ‖ we have, cf. [2]:

(3) ‖B‖ < 1

The norm of matrix B, cf. Eqn. (3) can be small in some norms and large in others, therefore a more stringent
condition based on spectral radius, ρ of matrix, B i.e. ρ(B) < 1 [2] is used in our work.

3 . Numerical example

A 2D rectangular sample of equal sized particles (cf. Fig 2) has been used to numerically verify the convergence
criterion defined by Eqn. (3). The discrete model consisting of 180 bonded disks of radii r = 1 mm and normal
contact stiffness kn = 7 · 1010 N/m was simulated under unconfined uniaxial compression mode. It will be
shown that the specific form of convergence criterion (cf. Eqn. (3)) for the rectangular sample is given as,

(4)
4kn(1 + νp)

πEpl
< 1

where, kn is normal contact stiffness, νp is particle Poisson’s ratio and Ep is particle Young’s modulus. A
substantial number of simulations have been done for the particle Poisson’s ratio νp ranging between 0.05 to
0.45 and a comparison between numerical and analytical convergence limit is presented.
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Figure 2: Verification of convergence criteria for an rectangular discrete sample of equal size particles

It can be seen from Fig. 2, that indeed we can predict the convergence limit of a DDEM model analytically and
hence select the microscopic elastic parameters suitably to obtain a convergent solution using DDEM model.
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