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Stating the least gradient problem

A version of the Free Material Design maybe stated as follows: given region Ω ⊂ Rd, d = 2, 3 a load at the
boundary consistent with the equilibrium, i.e.

∫
∂Ω g dS = 0 find the optimal distribution p of the material. By

optimality we mean that

(1)
∫

Ω
|p| = inf{

∫
Ω
|q| : q ∈ L1(Ω,Rd), div q = 0, q · ν|∂Ω = g}.

Here, ν is the outer normal to ∂Ω. It obvious from the statement of (1) that one should expect to find a solution
in the space of Radon measures,M, on Ω.

One can look for a dimension reduction of (1), which is simple, when d = 2. We notice that (1) is equivalent to

(2)
∫

Ω
|Du| = inf{

∫
Ω
|Dv| : v ∈ BV (Ω), v|∂Ω = f},

where BV (Ω) is space of functions with bounded total variation and ∂f
∂τ = g and τ is a tangent vector to ∂Ω.

The equivalence is given by the mapping BV (Ω) 3 u 7→ QDu ∈M, where Q is the rotation by π
2 , for details

see [3].

Existence of solution in strictly convex domains for different boundary conditions

It is well-known fact that if f ∈ C(∂Ω) and Ω ⊂ R2 is strictly convex, then there exists a unique solution to
(2), see [5]. For more general data neither existence, nor uniqueness is obvious. A part of the problem is that the
problem (2) is ill-posed, because the following functional Φ : L2(Ω)→ R∪{+∞}, given by Φ(u) =

∫
Ω |Du|,

if and only if u ∈ BV (Ω) and u|∂Ω = f , otherwise Φ(u) = +∞, is not lower semicontinuous. Nonetheless,
we can show
Theorem 1. (see [2], [3])
If Ω ⊂ R2 is strictly convex, f ∈ BV (∂Ω), then problem (2) has at least one solution. 2

Here is an Example of a solution, [3]. If ∂Ω is parametrized by arclength, [0, L) 3 s 7→ x(s) ∈ ∂Ω, then we
take f = (α1 + α2)χ[s2,s2) + χ[s2,L), s ∈ [s2, L). The solution, u, takes three values, 0, α1, α1 + α2 and it is
depicted on Fig. 1.

Fig. 1 Fig. 2

By modifying the method of [5] we can show existence of solution to (2) when continuous data are specified
only on Γ ( Ω.
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Theorem 2. (see [3])
If Ω ⊂ R2 is strictly convex, Γ ( Ω is a smooth arc, f ∈ C(Γ̄), then problem (2), when u|Γ = f is in place of
u|∂Ω = f , has at least one solution. 2

Existence of solutions in convex but not strictly convex domains

The main problem for existence is presence of nontrivial line segments ` in the boundary of Ω, we call them
flat parts. We shall say that a continuous function f ∈ C(∂Ω) satisfies the admissibility condition #1 on a flat
part ` iff f restricted to ` is monotone.

We associate with f on a flat piece of the boundary, `, a family of closed intervals {Ii}i∈I such that Ii = [ai, bi]
is contained in the interior of ` relative to ∂Ω. On each Ii function f attains a local maximum or minimum on
each ` and each Ii is maximal with this property. We also set ei = f(Ii), i ∈ I. For the sake of making the
notation concise we will call Ii a hump.

After this preparation we state the admissibility condition for non-monotone functions. A continuous function
f , which is not monotone on a flat part `, satisfies the admissibility condition #2 iff for each hump Ii = [ai, bi] ⊂
` and ei := f([ai, bi]), i ∈ I the following inequality holds,

(3) dist (ai, f
−1(ei) ∩ (∂Ω \ Ii)) + dist (bi, f

−1(ei) ∩ (∂Ω \ Ii)) < |ai − bi|.

Theorem 3. (see [4])
Let us suppose that Ω is convex and f ∈ C(∂Ω). In addition, ∂Ω has a finite number of flat parts {`k}Nk=1.
If f satisfies the admissibility conditions #1 or #2 on each flat part {`k}Nk=1 of ∂Ω, then there is a continuous
solution to the least gradient problem. 2

We can extend this result also to the case f ∈ BV (∂Ω) or an infinite number of flat parts of ∂Ω.

Example
We define Ω = (−L,L) × (−1, 1), L > 2. We take, fi ∈ C(∂Ω), i = 1, 2 given by f1(x, y) = cos(π2 y)
and f2(x, y) = cos(π2

x
L)χ|x|>L−2(x) + χ|x|≤L−2(x). For f1 problem (2) has no solution, while for f2 there

is a unique solution whose level sets are shown on Fig. 2. The shaded area is a level set of positive Lebesgue
measure.

We also discuss the lack of uniqueness of solutions. We show that non-uniqueness of solutions to (2) is related
to level sets of u with positive 2-d Lebesgue measure and discontinuities of f . This is done in [1].
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