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1 . Motivation

This paper is dealing with the linear theory of microstretch thermoelasticity, a theory that is part of the me-
chanics of generalized continua and which accurately describes the behaviour of materials with microstructure.
The concept of generalized continua was introduced by the Cosserat brothers in 1909, who considered a mi-
cropolar continuum to be a collection of interconnected particles in the form of small rigid bodies that have
three additional rotational degrees of freedom besides the three translational degrees of freedom from classical
continuum mechanics. Cosserat thermoelasticity was generalized to microstretch thermoelasticity by Eringen
in 1990 [6] by including the effect of axial stretch during the rotation of molecules.

In this paper, we prove the well-posedness of the mathematical model introduced in [3] for the anisotropic case.
The idea is to verify the assumptions from the Lumer-Phillips corollary to the Hille-Yosida theorem. As in [2],
the theory we derived is closer to the realistic constitutive structure of solids since it describes thermal-diffusion
interactions at the macroscopic and microscopic levels. Given the increasing interest in nanomaterials, it is im-
portant to take into consideration both the microtemperatures and the microconcentrations of the nanoparticles.
The concept of microconcentrations is a novel one, introduced for the first time in the theory of thermoelasticity
in [2] and for the first time in mechanics of generalized continua in [3].

2 . Basic equations

The equations of diffusive microstretch thermoelasticity with microtemperatures and microconcentrations [3]

(1)

tji,j + ρfi = ρüi ρT0Ṡ = qi,i + ρs

hk,k + g + ρl = Jϕ̈ ρε̇i = qji,j + qi −Qi + ρGi Ċ = ηi,i

mji,j + εirstrs + ρgi = Iijϕ̈j ρω̇i = ηji,j + ηi − σ̃i

In the equations above, ui is the displacement vector field, ϕ is the microdilatation function, ϕi is the microro-
tation vector, tij is the stress tensor, ρ is the reference mass density, fi is the body force, hj is the microstretch
vector, g is the internal body force, l is the external microstretch body load, mij is the couple stress tensor, gi is
the body couple density, C is the concentration, ηi is the flux vector of mass diffusion, S is the microentropy.
According to [3], the constitutive equations of the mathematical model for the anisotropic case are

(2)

tij = Aijrsers +Bijrsκrs +Dijϕ+ Fijkζk + LijkTk − aijθ + dijC

mij = Brsijers + Cijrsκrs + Eijϕ+Gijkζk +MijkTk − bijθ + fijC

hi = Frsiers +Grsiκrs +Aijζj +Biϕ−NijTj − diθ + f̃iC

g = −Dijeij − Eijκij −Biζi − ξϕ−RiTi + Fθ − g̃1C
ρS = aijeij + bijκij + diζi + Fϕ+ biTi + aθ +$C

ρεi = Lrsiers +Mrsiκrs −Njiζj +Riϕ−BijTj − biθ −RijCj

P = dijeij + fijκij + f̃iζi + g̃1ϕ−$θ + %C ρωi = −CijCj −RjiTj

Here, T0 is the absolute temperature in the reference configuration, qi is the heat flux vector, s is the heat supply
per unit mass, εi is the first moment of energy vector, qij is the first heat flux moment tensor,Qi is the microheat
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flux average, Gi is the first heat supply moment vector, ηij is the first mass diffusion flux moment tensor, σ̃i
is the micromass diffusion flux average, P is the particle chemical potential, T is the absolute temperature,
θ = T − T0, Ti are the microtemperatures, Ci are the microconcentrations and εijk is the alternating symbol.

3 . Well-posedness

We assume null boundary conditions. We introduce the notations u̇i = vi, ϕ̇i = ψi and ϕ̇ = ψ. Let H ={
(ui, vi, ϕ, ψ, ϕi, ψi, θ, Ti, P, Ci) : ui, ϕi ∈W1,2

0 (Ω), vi, ψi, Ti, Ci ∈ L2(Ω), ψ, θ, P ∈ L2(Ω), ϕ ∈W 1,2
0 (Ω)

}
where W 1,2

0 (Ω), L2(Ω) are the familiar Sobolev spaces and W1,2
0 (Ω) =

[
W 1,2

0 (Ω)
]3
,L2(Ω) =

[
L2(Ω)

]3.
The boundary initial value problem can be transformed into the following equation in the Hilbert spaceH

(3)
dU
dt

= AU(t) + F(t) U(0) = U0

where U = (ui, vi, ϕ, ψ, ϕi, ψi, θ, P, Ti, Ci), U0 =
(
u0i , v

0
i , ϕ

0, ψ0, ϕ0
i , ψ

0
i , θ

0, P 0, T 0
i , C

0
i

)
is the vector of

initial conditions and A is a certain matrix operator onH.

Lemma 3.1 In the case of diffusive microstretch thermoelasticity with microtemperatures and microconcentra-
tions and for every U ∈ D(A), the operator A satisfies the inequality

(4) 〈AU ,U〉 ≤ 0

in a suitably introduced inner product inH.

Lemma 3.2 In the case of diffusive microstretch thermoelasticity with microtemperatures and microconcentra-
tions, and for Id the identity operator inH, the operator A has the property that

(5) Range(Id−A) = H

Theorem 3.1 The operator A generates a semigroup of contractions inH.

This result proves that in the motion following any sufficiently small change in the external system, the solution
of the initial boundary value problem is everywhere arbitrary small in magnitude. Now that we proved that
the mathematical model is well-posed by means of the semigroup of linear operator theory, the asymptotic
behaviour of solutions and the effect of a concentrated heat source can be studied.
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